\(\int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx\) [60]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 124 \[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))^2}{4 b c \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

1/2*x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)-1/4*b*c*x^2*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)-1/4
*(a+b*arccosh(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c/(c*x-1)^(1/2)/(c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {5895, 5893, 30} \[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))^2}{4 b c \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {c x-1} \sqrt {c x+1}} \]

[In]

Int[Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]),x]

[Out]

-1/4*(b*c*x^2*Sqrt[d - c^2*d*x^2])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]
))/2 - (Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^2)/(4*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5893

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*(a + b*Arc
Cosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && NeQ[n
, -1]

Rule 5895

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*(
(a + b*ArcCosh[c*x])^n/2), x] + (-Dist[(1/2)*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])], Int[(a + b*
ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sq
rt[-1 + c*x])], Int[x*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
&& GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))-\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \text {arccosh}(c x)}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))^2}{4 b c \sqrt {-1+c x} \sqrt {1+c x}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 0.47 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.16 \[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\frac {1}{8} \left (4 a x \sqrt {d-c^2 d x^2}-\frac {4 a \sqrt {d} \arctan \left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )}{c}-\frac {b \sqrt {d-c^2 d x^2} \left (2 \text {arccosh}(c x)^2+\cosh (2 \text {arccosh}(c x))-2 \text {arccosh}(c x) \sinh (2 \text {arccosh}(c x))\right )}{c \sqrt {\frac {-1+c x}{1+c x}} (1+c x)}\right ) \]

[In]

Integrate[Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]),x]

[Out]

(4*a*x*Sqrt[d - c^2*d*x^2] - (4*a*Sqrt[d]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))])/c - (b*S
qrt[d - c^2*d*x^2]*(2*ArcCosh[c*x]^2 + Cosh[2*ArcCosh[c*x]] - 2*ArcCosh[c*x]*Sinh[2*ArcCosh[c*x]]))/(c*Sqrt[(-
1 + c*x)/(1 + c*x)]*(1 + c*x)))/8

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(277\) vs. \(2(104)=208\).

Time = 0.75 (sec) , antiderivative size = 278, normalized size of antiderivative = 2.24

method result size
default \(\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right )^{2}}{4 \sqrt {c x -1}\, \sqrt {c x +1}\, c}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 c^{3} x^{3}-2 c x +2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}-\sqrt {c x -1}\, \sqrt {c x +1}\right ) \left (-1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 \left (c x -1\right ) \left (c x +1\right ) c}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}+2 c^{3} x^{3}+\sqrt {c x -1}\, \sqrt {c x +1}-2 c x \right ) \left (1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 \left (c x -1\right ) \left (c x +1\right ) c}\right )\) \(278\)
parts \(\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right )^{2}}{4 \sqrt {c x -1}\, \sqrt {c x +1}\, c}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 c^{3} x^{3}-2 c x +2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}-\sqrt {c x -1}\, \sqrt {c x +1}\right ) \left (-1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 \left (c x -1\right ) \left (c x +1\right ) c}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}+2 c^{3} x^{3}+\sqrt {c x -1}\, \sqrt {c x +1}-2 c x \right ) \left (1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 \left (c x -1\right ) \left (c x +1\right ) c}\right )\) \(278\)

[In]

int((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*a*x*(-c^2*d*x^2+d)^(1/2)+1/2*a*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/4*(-d*(c
^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)/c*arccosh(c*x)^2+1/16*(-d*(c^2*x^2-1))^(1/2)*(2*c^3*x^3-2*c*x+2*(
c*x-1)^(1/2)*(c*x+1)^(1/2)*c^2*x^2-(c*x-1)^(1/2)*(c*x+1)^(1/2))*(-1+2*arccosh(c*x))/(c*x-1)/(c*x+1)/c+1/16*(-d
*(c^2*x^2-1))^(1/2)*(-2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^2*x^2+2*c^3*x^3+(c*x-1)^(1/2)*(c*x+1)^(1/2)-2*c*x)*(1+2*
arccosh(c*x))/(c*x-1)/(c*x+1)/c)

Fricas [F]

\[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a), x)

Sympy [F]

\[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\int \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )\, dx \]

[In]

integrate((a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x)), x)

Maxima [F]

\[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(-c^2*d*x^2 + d)*x + sqrt(d)*arcsin(c*x)/c)*a + b*integrate(sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c*x +
 1)*sqrt(c*x - 1)), x)

Giac [F(-2)]

Exception generated. \[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\int \left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \]

[In]

int((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2), x)